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Abstract—Indoor localisation systems have slowly become
more and more accurate. Each localisation system needs tuning to
affect reasonable performance. In this paper we propose CRAFT,
a crowd sourced approach to constructing a WiFi fingerprint
database. The method uses a temporarily deployment of a small
number of anchor nodes to roughly locate the position of the WiFi
sample. Through thorough experiments in a real-world building,
CRAFT’s error is 2.2m a decrease of 25% when compare to
other published results.

Keywords—Indoor environments, Crowdsourcing, Received sig-
nal strength indicator, Indoor Navigation

I. INTRODUCTION

There are multiple indoor localisation techniques that use
Received Signal Strength Indicator (RSSI) to locate a device.
Trilateration, often requires a small amount of data to train
the system at the cost of inaccurate distance measurements
due to the variability of RSSI. An alternative approach,
fingerprinting, can offer higher accuracies at the expense of
large amounts of training data. Other researchers have used
Pedestrian Dead-Reckoning (PDR) to locate the device [1],
and rely on accelerometers, magnetometers, or gyroscopes (or
a combination of these sensors) [2], and often require detailed
floor plan information [3, 4, 5, 6, 7] which may not always
be available, accessible, or useful (such as airports).

In this paper we combine the advantages of trilateration
and fingerprinting and explore localisation in an environment
where the floor plan information is inferred by the deployment
of anchor nodes. By deploying a temporary localisation system
and performing trilateration with crowdsourced data, locations
of the WiFi fingerprints can be estimated. Once the fingerprint
database has been completed the temporary localisation sys-
tem can be removed.

CRAFT a novel technique that uses crowdsourcing to re-
duce the collection effort needed to construct a comprehensive
and extensive fingerprint database. The ability of CRAFT to
reduce the burden of fingerprint construction without sac-
rificing location accuracy is demonstrated through thorough
experiments conducted in a real world building.

The rest of the paper is organised as follows: Section II
gives an overview of recent work on training the fingerprint
database for RSSI based indoor localisation systems. Sec-
tion III motivates the approach by examination of the work
needed to deploy a fingerprint based indoor localisation in a
real world environment with the approach to crowdsourced
construction described in Section IV. The testing procedures,
environment, and evaluation of the approach are discussed
Section V. Finally, the conclusions are presented in Sec-
tion VI.

II. RELATED WORK

Three approaches for the construction of the fingerprint
database are: supervised, where each fingerprint is labelled
with a location; semi-supervised, where some fingerprints are
labelled and other fingerprint labels are inferred; and finally,
unsupervised, where none of the fingerprints are labelled [8].

An unsupervised approach is attractive as it minimises the
amount of manual effort needed [3, 9, 10, 11]. However, accu-
rate modelling, taking a wide variety of factors into account,
is needed to ensure good radio propagation modelling. These
factors consist of static and dynamic components, such as
positions and orientations of walls, doors, windows, furniture,
as well as their radio propagation properties (which are often
difficult to obtain). Even if these details were easily obtainable,
modeling the radio propagation is a complex process [12].

While a completely manual approach is an option, it is
expensive in terms of the time needed to sample the space.
A suggestion to reduce the time taken is to reduce either
the density of sampling, or reduce the number of samples
collected per point [13]. Both of these suggestions will result
in a increase in error by either omitting some of the potential
locations or by increasing the fingerprint’s susceptibility to
outliers. Neither of these options are desirable as they pro-
duce a poor-quality fingerprint database. These problems are
explored in further detail in Section III.

A solution to the problem lies in a semi-supervised
approach. One method to achieve the goal of minimal effort
radio mapping is to interpolate between the sparsely collected
sample points [14, 15]. While this reduces the number of
sample points needed, these methods are sensitive to the
interpolation method used. For example, using a naïve linear
method is problematic as RSSI is not linear between two
points.

Distributing the task of sampling across multiple people
avoids the problems associated with either interpolation or
modelling. A number of proposed indoor localisation sytems
already employ the power of crowdsourcing to build a fin-
gerprint database, such as, leveraging opportunistic Global
Positioning System (GPS) signals, or, PDR techniques both
with and without floor plan information.

The PDR techniques, without floor plan information,
generally suffer from sensor drift over periods of time and can
produce vastly inaccurate estimates of location. For example,
the mean error is from 7.6m to 8.9m in some indoor experi-
ments [16]. Given the fingerprint database is built upon loca-
tion estimates that can be highly inaccurate, approaches using
PDR without floor plan information are too inaccurate. On
the other hand, with the availablitiy of floor plan information,
PDR is used to compute the likely location which can then
be refined using floor plan information [17, 18, 19, 20]. LiFS978-1-5386-3531-5/17/$31.00 © 2017 IEEE



Fig. 1: Areas and sample points used in the evaluation.

[5] uses the floor plan to generate a uniform grid of sample
points which is then subjected to Multi-dimensional Scaling
(MDS). The result is a stress-free floor plan. The RSSI data are
collected along with the number of steps between subsequent
measurements. Once similar fingerprints are merged the step
counts are used to produce a distance matrix. This distance
matrix is processed using the same MDS technique resulting
in fingerprint space. The mapping between the stress-free floor
plan and the fingerprint space can be calculated and used to
locate devices. Another approach, Sub-area [6], splits the floor
plan into different sub-areas. The crowdsourced WiFi data is
then clustered using MDS and the clusters are matched to
each of the sub-areas. KAILOS [7] breaks the floor plan into
a grid (each cell is either 3m× 3m or 2m× 2m). Each
cell is then linked to its neighbours and itself to produce
a Hidden Markov Model (HMM). Traces recorded in the
environment are mapped onto this HMM and the associated
WiFi fingerprints for each cell are used for localisation.

The key problem we solve is building the fingerprint
database via crowdsourcing without relying on explicit floor
plan information. In the next section a description of the effort
needed to deploy a fingerprint-based RSSI system in a small
test deployment is presented.

III. MANUAL CONSTRUCTION OF THE FINGERPRINT

DATABASE

Deploying a fingerprinting system manually is a time
consuming process. The fingerprint data is collected at pre-
planned locations throughout the building. The test deploy-
ment was conducted in the Owheo Building, the floor plan of
which is shown in Figure 1. It is a typical academic build-
ing with a mixture of shared office space (for postgraduate
students), private office space (for academic staff) and corri-
dors to access the rooms. The mezzanine (7.1m× 10.2m)
joins the two wings (the usable area of the mezzanine is
reduced by a staircase occupying the south-west corner).
The west corridor is comprised of two sub-corridors joined
by a right angle (east-west 13.7m× 2.1m; the north-south
1.9m× 25.8m). The postgraduate suite is a shared office for
students (10.8m× 13.2m). The remaining rooms are private
staff offices and are inaccessible for our experimentation.

Once the positions have been marked the collection of
samples can begin. By default WiFi beacon frames are broad-
cast by the access points approximately every 0.1024 s. These
frames contain the network’s Basic Service Set Identifier
(BSSID), Service Set Identifier (SSID), and other parameters.
As the beacon frames are received, the RSSI is measured, and

TABLE I: Estimated and reported data collection times for
published crowdsourced fingerprint construction algorithms.
The estimated time was calculated from (1) with Ns =
25, N = 1.

Te (hours) Reported

A R Tp=1 s Tp=5 s (hours)

LiFS [5] 1600 0.25 3.0 17.0 20.0
SubArea [6] 460 0.39 1.5 7.5 2.0
CRAFT 250 1.00 2.0 10.5 2.5

recorded along with the BSSID, SSID, and time. The dataset
for the experiments is composed of 25 passively collected
WiFi beacon frames per ground truth location. This collection
took approximately 30 s per location to collect. Depending on
the devices, sampling the WiFi may take between 1 s to 5 s
per location.

Te ∝
ARTp

N
(1)

We estimate the amount of time, Te, to perform the data
collection according to (1). Where A is the area (m2), R is the
resolution measured as the number of sample points per m2,
Tp is the estimate of the time per point, and N is the number
of people performing the collection. This formulation does not
take into account the administration effort, such as recording
the position, moving from one position to the next, manage-
ment of people, and so on. Our dataset was collected with
a resolution of 1m× 1m, to match other published indoor
localisation work, and resulted in a total of 97 sample locations
throughout the accessible areas of the Owheo Building as
shown by the dots in Figure 1. From the dimensions and
time for WiFi scans the following parameters are obtained:
A = 250.7m2, R = 1, Ns = 25, Tp = 1 s, N = 1, and
thus, Te ∝ 125.35min, or just over 2 h. The collection
for the dataset used in this work took 2.5 h to complete.
Some examples of previous reported collection times and
parameters (for (1)) are presented in Table I along with Te.
While crowdsourcing can allow for less manual effort, the
location problem remains: how can the crowd know where
they are, without any interaction on their part, in order to
supply good quality WiFi fingerprint data?

IV. CROWDSOURCING THE FINGERPRINT DATABASE

We deploy a temporary localisation system in the envi-
ronment, gather crowd sourced data, and construct a WiFi
fingerprint database using the locations provided by the tem-
porary system. The state-of-the-art RSSI trilateration system,
Emender [21], is used with a deployment of Wireless Sensor
Network (WSN) anchor nodes for the temporary localisation
scheme. The specifics of this approach in context are discussed
below. While we use Emender, any localisation system can
be used provided that it is: quick to deploy, requires mini-
mal training, and accurate for the purpose. The trilateration
approach uses empirical data and a mathematical model with
tuned parameters to estimate the distance from the measured
RSSI. The WSN is used as we assume no knowledge of the
WiFi access deployment.

Figure 2 shows the components of CRAFT. The three
phases Setup, Construction, and Query, along with their re-
spective tasks are discussed in the remainder of this section.
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Fig. 2: The CRAFT algorithm, where the boxes indicate
processes while ovals are for data. The purple tasks are related
to trilateration, the green are the fingerprinting stages. The
blue tasks on the right are to improve the accuracy of the
system. The orange Crowdsourcing task provides data for
the fingerprint database. The grey boxes indicate that the
element can occur at either of those locations and is evaluated
empirically.

By using the crowd to collect data the effort is reduced for a
single individual. There are other advantages such as: adaptive
resolution, where more frequented areas will have a higher
density of samples; reusable anchor nodes, which can be used
in other areas or buildings once collection is complete (thus
the monetary cost is decreased); and finally, fitting in with the
overall aims of this study, ubiquitous technology can be used
for localisation with the resulting fingerprint database.

A. Setup
In the setup phase the temporary localisation system is

deployed in the building and trained. The phase is broken into
three tasks: deployment, zoning, and training. The deployment
task is where the anchor nodes are positioned around the
environment. CRAFT’s only requirement is that some of the
anchor nodes are deployed around the perimeter of the build-
ing. The positions are recorded along with the corresponding
unique identifier of each node. Note that this task is required
by any trilateration system and is not specific to Emender. The
next task, zoning, is where the anchor nodes in the building
are grouped into ‘zones’ which can be allocated on a per-room
basis, or in the case of a large area, to sub-areas as needed.
This is discussed further the Construction phase below. The
final, training, task is concerned with calibrating the temporary
localisation system. Emender, like any trilateration scheme,
uses a linear-least-squares method to fit the Log-distance path
loss (LDPL) model to the WSN data for each anchor node
and transmission power level independently [21]. The amount
of data needed to train the system is discussed in Section V.

B. Construction
Collecting data from the crowd for fingerprinting is a

straightforward task. Each member of the crowd acquires data
from both the temporary localisation system and the WiFi
networks detected by their smart phone, or the collection
device. The collected WiFi data contains the RSSI, BSSID,
SSID, frequency, and time. We use the timestamps to associate
WiFi and WSN data.

The bounding boxes are constructed by selecting the max-
imum and minimum x and y components from the locations of
the anchor nodes for each zone. An example of this is shown
in Figure 3. Each node is allowed to belong to multiple zones
so that the resultant bounding boxes can overlap. Constuction

Fig. 3: Example bounding box computation for the shared
postgraduate suite. The nodes 38 and 33 provide the left and
right edges, while 37 and 30 provide the top and bottom edges
respectively.

Fig. 4: Computed bounding boxes overlaid on the floor plan.

of the bounding boxes in this manner is automatic and requires
no explicit information about the floor plan.

To improve the accuracy, the location estimates are re-
stricted using the bounding boxes. A check is performed
using the location estimate against each of the bounding
boxes. The location estimate is only valid if it is inside at
least one bounding box, if the location estimates are not
valid they are ignored. This task appears twice in Figure 2
because this check can be performed before construction of
the fingerprint database or after the fingerprint database has a
location estimate. The evaluation of where, or if, to perform
the check appears in Section V.

The fingerprint database is constructed in the traditional
manner, as described by RADAR, from the location estimates
and fingerprint data collected by the crowd [22], we follow this
approach as the emphasis of this paper is to reduce the effort
needed to construct the fingerprint database. Fingerprints that
share the same location are averaged across the BSSIDs. Once
this task is complete, the temporary localisation system can be
removed from the area. Queries are then made to find the clos-
est RSSI vector in the fingerprint database. We compute the
Euclidean distance between the query and stored fingerprint
RSSI vectors, penalising missing values by a fixed amount
(in this case 100 dB) larger than the sensitivity of the WiFi
radios. This avoids problems with differing dimensionalities
of the query and fingerprint RSSI vectors while remaining as
authentic to RADAR as possible.



V. EXPERIMENTAL RESULTS

In this set of experiments each component of CRAFT
is isolated and the performance is investigated. The first
experiment is an assessment of the accuracy of the WiFi
fingerprinting scheme with a fingerprint database constructed
from the known locations. The subsequent experiments first
test the accuracy of the trilateration step and finally, the
accuracy of the trilateration constructed database. All these
experiments test against the ground truth. The samples at each
location, for each access point/anchor node, were collected
from both technologies sequentially until the desired number
of scans was reached. The WSN was able to respond with
multiple transmission power levels so we record the anchor
node ID, WSN scan number, transmission power, RSSI and
the time of the sample. While for the WiFi we collected the
WiFi scan number, RSSI, SSID, BSSID and time of the scan.
Unless otherwise stated, the queries comprised the results of
a single scan with no further processing performed before
estimating the location.

A. Bounding Boxes
The bounding boxes computed from the positions of

the anchor nodes quickly and suitably approximate the size
and shape of the rooms in our deployment. The differences
between the bounding boxes and the actual rooms are firstly,
the areas outside the building at the top of the postgraduate
suite—the bounding boxes consider them inside the building
when they are outside; secondly, where the vertical corridor
joins the horizontal—the angled piece is missing; thirdly, there
is a minor misalignment in the horizontal corridor; and finally,
the mezzanine’s box fails to account for the staircase where
experimental data were not collected.

B. Accuracy of WiFi Fingerprinting
The fingerprint database was constructed using the ground

truth and the WiFi fingerprints in a 80/20 split between
training and test data. Each fingerprint and the resulting
location estimate are treated independently, meaning that we
do not perform any additional processing on the location
estimates even if we know them to be from the same ground
truth point. From this experiment, the mean error was 0.36m
with a standard deviation of 1.96m and maximum error of
28.43m. All the ground truth locations were contained within
one or more bounding boxes so none of the location estimates
were ignored.

C. Training of Trilateration
To determine the number of sample points needed for

this approach we evaluated an increasing number of randomly
chosen sample points from the deployment area. We started
by taking ten locations (selected at random) and training the
LDPL model, and storing the Least-squares model’s coeffi-
cient of determination (R2). At each location we performed
the same 80/20 split between testing and training datasets.
This process was repeated 50 times increasing the number
of selected locations from ten to the entire dataset (97).
The R2 values plateaued (to approximately 0.6) when 25
random locations were chosen. From this analysis we can
see that the number of training locations has been reduced
to approximately 25%.

D. Accuracy of Trilateration
The evaluation of the trilateration accuracy isolates the

component and evaluates against the ground truth locations.
When the fingerprint database is constructed, the WiFi fin-
gerprints collected at the same point are merged. In this
experiment, the average RSSI for each BSSID in each ground
truth location are used, thus the maximum number of location
estimates is 97. The results are presented in Table II. The error
decreases from 2.40m to 2.04m and the number of valid
location estimates decrease from 97 to 71 due to the bounds
checks. This is an expected consequence of the trilateration
process, and there is a trade-off to be made between higher
error and complete coverage, or, lower error with patchy
coverage.

E. Accuracy of CRAFT
From table III, we see that the error is decreasing between

this experiment and the best performing previous trilateration
results. There are two cases under evaluation in this exper-
iment: unbounded (where none of the bounds checks are
performed), and bounded (where at least one bounds check
is perfomed: post-fingerprinting, pre-fingerprinting, or both).
In both the unbounded and bounded cases the mean error
increases between the experiments by 0.29m and 0.70m
and 0.16m respectively. The 0.29m mean error increase is
broadly consistent with the expected outcomes.

The trade off between lower error with patchy coverage
or higher error with complete coverage explains the difference
between the 0.70m and 0.16m errors. The largest error
occurs when the trilateration location estimates are excluded
before constructing the fingerprint database but are more
accurate, whereas the best performance can be seen when
the fingerprint database has full coverage and the bounds are
imposed only after the fingerprint step resulting in a mean
error of 2.20m.

Consider the case where the trilateration phase estimates
the location outside the bounds and suppose that fingerprint is
the closest match in the database. If this point and associated
data were to be excluded, the fingerprinting algorithm would
search for the next closest match inside the bounded area, and,
result in a deviation from the true location thus increasing the
total error. If, on the other hand, the point and associated data
were to remain in the database then the fingerprint algorithm
selects it as the closest match and is then checked against the
bounds and only then is eliminated. This does not increase
the error but the number of ‘not found’. This is borne out
in the Table III where there are 130 troublesome queries, by
comparing the number of successful location queries between
the second row and any of the others. These 130 queries
correspond to the same points eliminated in the previous
experiment.

Within this experiment, the error increases from 2.69m
unbounded to 2.74m pre-fingerprint is a result of the bounds
checks because they restrict the fingerprint database as dis-
cussed above. The last two rows of Table III are identical for
a similar reason—all the location estimates outside the bounds
have already been removed in the trilateration stage, thus the
bounds check has no effect at the fingerprinting stage.

By constructing the fingerprint database from these esti-
mated locations from trilateration on the temporary network
introduces approximately 16 cm to 70 cm of error—broadly



TABLE II: Trilateration localisation results compared with
the ground truth.

Error (m)

Valid Mean St.Dev. Median Max

Post F’print 71 2.04 1.24 1.80 4.96
None 97 2.40 1.43 2.18 7.25

TABLE III: The accuracy of the CRAFT algorithm. The
bounds checks are performed after the named stages.

Bounds Error (m)

Check Valid Mean St.Dev. Median Max

None 479 2.69 2.34 2.28 30.95
Post F’print 349 2.20 1.62 1.90 16.01
Pre F’print 479 2.74 2.32 2.18 20.62
Both 479 2.74 2.32 2.18 20.62

consistent with the error introduced by the fingerprinting
algorithm as seen in Section V-B.

VI. CONCLUSION

This paper presented CRAFT, a solution to the problem
of the effort involved with constructing a fingerprint database
using crowdsourcing. The approach uses crowdsourcing and
leverages the advantages of a temporary anchor node de-
ployment and trilateration to produce location estimates for
a fingerprint database. Since this temporary deployment is
adaptable and the trilateration is flexible to each unique
environment, it is suitable for general use. The thorough
and comprehensive evaluation in a real building demonstrates
the practicality of the approach. The mean location error
is 2.20m and while this error remains relatively high, any
future improvements to RSSI trilateration or alternative easy
to deploy systems like Emender are anticipated to improve
the performance of this method. While the experiments were
conducted with a WSN it is possible to use this approach with
other digital radio hardware and thus is suitable for ubiquitous
devices.
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