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ABSTRACT
Research efforts into indoor localisation have focused on im-
proving the accuracy of location estimates. In this paper, we
propose a novel approach called SIB that uses RSSI values
from low-power transmissions to exclude the noisy measure-
ments from usual high-power RSSI measurements. SIB can
effectively reduce the effect of noise in fingerprint-based lo-
calisation according to our analysis on the function of power
loss ratio to transmission distance. Our results, based on
evaluation in a real-world environment with noisy data, show
a decrease in the geometric error of 85% in our indoor local-
isation.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscel-
laneous

General Terms
Design, Experimentation, Measurement, Performance

Keywords
RSSI fingerprint, indoor localisation, noise reduction, wire-
less, transmission power

1 Introduction
In recent years research efforts into indoor localisation have
focused on improving the accuracy of location estimates.
They are motivated by applications such as autonomous
robotics [11], advertising (and other consumer related be-
haviour) [6], and indoor navigation [10], which require high
accuracy of location estimates. However, many such ap-
proaches require extra hardware such as ultrasound [16] to
improve accuracy and are not very practical for commod-
ity mobile devices such as smart phones. Received Signal
Strength Indicator (RSSI) measurements are readily avail-
able but are notoriously noisy and so it is difficult achieve
high accuracy.

However, our proposed approach Shorter is Better (SIB)
can remove excessively noisy RSSI data to improve accu-
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racy during indoor localisation using multiple transmission
powers. When we query the database we exclude the finger-
prints based on the visibility of the minimum transmission
power, thus excluding excessively noisy anchor nodes and
improving the accuracy of the location estimates. As far as
we know, this work is the first time multiple transmission
powers have been used in this manner.

The main contributions of this work are firstly, we propose
a novel noise reduction approach SIB using multiple trans-
mission powers. Secondly, based on the noise reduction, we
propose a new fingerprinting algorithm based on SIB with
multiple transmission powers. Thirdly, we conduct compre-
hensive experiments to show that SIB can achieve better
accuracy than many existing fingerprinting methods.

We first discuss related work below, then in Section 3 we
present our approach to noise reduction and our fingerprint-
ing algorithm based on SIB. Our test environment is de-
scribed in Section 4 where we also present the results. Our
conclusions appear in Section 5.

2 Related Work
Typically there are two broad classes of indoor localisation
methods: range-free (relying on a distance-per-hop metric
[17], and are inaccurate) and ranged-based. Range-based
methods estimate more accurately the distance between the
mobile node and the anchor node. This family of techniques
includes Time of Arrival (TOA), Time Difference of Arrival
(TDOA), Angle of Arrival (AOA), and RSSI. For a more
thorough discussion refer to [14]. Apart from RSSI these
methods require specialised hardware not typically found
on commodity devices.

There are two techniques that apply to RSSI, trilatera-
tion [9], where we estimate the distance to multiple anchor
nodes and calculate the position of the mobile node; and
fingerprinting [4, 24], where the estimated location is found
by matching between the observed signal patterns and the
previously collected signal patterns. The main problem with
trilateration is that the distance calculation is very sensitive
to noise. Conversely, fingerprinting methods are well known
for their high accuracy relative to trilateration.

To increase the accuracy of the fingerprinting approach
we can either use advances in hardware, such as Multiple-in
and Multiple-out (MIMO) and channel responses, to give us
more fine-grained fingerprints [19, 20] (and increasing the
cost of the hardware), or we can investigate different algo-
rithmic approaches to processing the RSSI data. Some pre-
vious work consists of techniques such as hardware calibra-
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tion, (which necessitates fitting a model to data and expen-
sive testing hardware) [1, 22]; smoothing measurements, for
example, complex noise removal [8], Kalman filtering [2], and
regression models [7] — all of these increasing the complex-
ity of calculations; particle filtering [18]; using a combination
of sensor data (requiring that those sensors are available for
use) [3, 12]; and finally, changing the underlying model of
how to compute the distance [15]. All of these have im-
proved the accuracy in their respective environments, either
in simulation [7, 12, 18] or in the real-world [2, 8, 15, 22].

The use of multiple transmission powers has been used in
other work. Some fit models to the different transmission
power levels [23] and use a trilateration method, or combin-
ing multiple transmission power information to increase the
accuracy [13] (but due to limitations in their storage they
only achieve an accuracy of 2m), or use multiple transmis-
sion powers to provide a bound to their range-free method
[5]. As discussed above, trilateration and range-free meth-
ods are not accurate.

In summary, these techniques are usually expensive in
computation and may not be suitable for real-world localisa-
tion. The accuracies for different fingerprinting approaches
from real-world experiments range from 1.3m to 4.69m [2,
4, 8, 15, 19, 20, 22, 24].

3 Shorter Is Better (SIB)
Traditional fingerprinting methods, like Radar [4], divide an
area into a grid. At each of the grid point RSSI samples
are collected from anchor nodes. For each node, the sam-
ples are averaged to give a single RSSI value. The location
information is used to group the anchor node IDs and their
associated RSSI values into a tuple – called a fingerprint.
Note that it is possible that some anchor nodes are out of
range of the point in which cases the RSSI values are set
as nil. During localisation, RSSI values are collected from
the anchor nodes at an unknown location and are put into
a query tuple. Then the Euclidean Distance between the
query and each of the fingerprints in the database is calcu-
lated. Finally the tuple in the fingerprint database with the
minimum distance is chosen and its associated location is
decided to be the estimated location.

The noisy RSSI problem is more serious when the dis-
tance between the query location and an anchor node is very
large. The problem can be explained by the well-known log
distance path loss model, Ptx − Prx = Pref + 10γ log d

dref
,

shown graphically in Figure 1 (the low transmission power
is the dashed curve, high power is the solid curve). When
the distance between a location and an anchor node is large,
the power loss ratio to distance becomes smaller according
to the solid curve in Figure 1. The technical specifications of
the TelosB sensor motes used in our study describe a ±6dB
level of noise associated with the RSSI measurements [21].
Given this level of noise in the measurements and the shape
of the curve there is a large range where we can observe
the same RSSI value, especially at a large distance from the
transmitter.

In Figure 1 the dotted lines indicate a measurement with
an error at two different transmission power levels. The
closer we are to the transmitter the less effect this measure-
ment error has on the distance range, conversely, the further
from the transmitter, the larger the distance. For example,
we receive a high power RSSI measurement of between -75dB
and -81dB we could between 15.0m and 18.5m away from

Figure 1: Signal strength as a function of distance for two
transmission power levels (0dBm and -55dBm)

Figure 2: The example situation

the transmitter. Therefore, we should use RSSI values col-
lected at shorter distances from anchor nodes to reduce the
effect of measurement noise (for example, a measured RSSI
between -19dB and -25dB results in a position between 2.0m
and 2.5m).

A simple solution is to use a distance threshold (where the
distance between the sample point and anchor node is, say,
less than 10m) but this is not satisfactory as different anchor
nodes may have vastly different thresholds dependant on the
environmental factors. The low transmission power provides
a natural cut-off. Because the devices cannot receive a signal
below a threshold defined in the hardware (in our devices
the limit is -90dB) we can use the visibility of the minimum
transmit power as a measure of proximity to the transmitter.

We collect both high-power and low-power RSSI values
from each anchor node in the query and fingerprint tuples.
For each anchor node, if the low-power RSSI value is not
available we ignore the anchor node in the subsequent dis-
tance calculation. Because we do not observe the low trans-
mission power, we must be far from the transmitter, or in
the shaded portion of Figure 1.

3.1 Example
Though fingerprinting has good localisation accuracy com-
pared to other RSSI-based methods, its accuracy is suscepti-
ble to noise as discussed previously. In our typical example,
we have three grid points (A, B and C) and two anchor
nodes (n1 and n2), illustrated in Figure 2. At each grid
point we record the signal strengths from the two anchor
nodes and construct the fingerprint database. These values
are presented in the second and third columns of Table 1.

Suppose we collect a query tuple Q = (−70,−70) at a
location close to grid point B. Though the query tuple is

Point n1 n2 Distance from Q = (−70,−70)

A -69 -72
√

12+22

2
= 1.6

B -73 -69
√

32+12

2
= 2.2

C -73 -70
√

32+02

2
= 2.1

Table 1: A worked example of fingerprinting.



Point n1 n2 Distance from Q
(low,high) (low,high) (nil,−70), (−87,−70)

A (-88, -69) (nil, -72) nil

B (nil, -73) (-86, -69)
√

12+12

2
= 1.0

C (nil, -73) (-89, -70)
√

22+02

2
= 1.4

Table 2: Continued worked example with multiple pow-
ers.

collected at a location close to B, its RSSI value from an-
chor node n1 differs from that of B due to the noise in the
RSSI measurements, which is very common in real RSSI
measurements.

In the example outlined in Table 1, the estimated location
is A as it is the one that has the smallest distance. However,
we know that our result as the location should be B. This
is due to noise in the samples being collected. We also note
that even C is closer than A.

Since we collect both high-power and low-power RSSI val-
ues, our query is now Q = ((nil,−70), (−87,−70)), where
the RSSI values are collected at a location closer to grid
point B. Since Q is far from anchor node n1, it cannot re-
ceive the low-power RSSI value from n1, so its value is nil.
Likewise, in Table 2, since point A is far from anchor node
n2, the low-power RSSI value from n2 is set nil. Similarly
nil is set for low-power RSSI value of n1 in the fingerprint
tuple at points B and C.

Given we ignore every high-power RSSI value where the
corresponding low-power RSSI value is nil in the distance
calculation, the noise from high-power RSSI values of long
distance are excluded. In our example in Table 2, we exclude
point A from consideration as all its high-power RSSI values
are excluded by nil low-power RSSI values from either the
query tuple or the fingerprint tuple of A. Since A is excluded,
our candidate points are now C and B, both are closer to Q
than A. Because B’s distance is smallest we present this as
our estimated location which is much closer to the ground
truth than our previous estimate. Even if C were selected
due to noise in low-power RSSI values, the error is much
smaller than that if A were selected, because the power loss
ratio is larger in shorter distances as explained previously
and shown in Figure 1. It is worth noting that C is not
selected because its low-power RSSI value sets it apart from
the query tuple, though C is a close competitor of B.

3.2 SIB-based Fingerprinting Algorithm
When we receive a query we iterate over the fingerprint
database and for each point, we find a set of anchor nodes
common to the query and the fingerprint, which means the
common nodes are visible to both the query location and the
location associated with the fingerprint. If this set is empty,
we move onto the next point, otherwise we then find a set
of common power levels per node. If the common power
levels set is not empty, we then calculate the difference be-
tween the stored value and the query and add the square
of the value to the cumulated distance, keeping a count of
the number of the items included. In the SIB approach we
add an additional condition here: that the set of common
power levels must contain the minimum transmission power.
Once we have finished processing all the nodes and power
levels we divide the cumulated distance by the count, and
take the square root. If the final value is smaller than the

Data: q as query, fp as fingerprint database
Result: estimated location
begin

smallest point = nil
smallest distance = ∞
for p in the fingerprint database :

cumulated distance = 0
cumulated count = 0

ν = calculate the common node set

for n in ν :

% = calculate the common power levels set

if the minimum transmit power is not in % :
continue

for l in % :
cumulated dist += (q[n][l] - fp[p][n][l])2

cumulated count += 1

dist =
√

(cumulated dist / cumulated count)

if dist < smallest distance :
smallest distance = dist
smallest point = p

return smallest point
Algorithm 1: SIB-based Fingerprinting Algorithm

(a) Each coloured area is a dif-
ferent region in the building,
annotated with the area.

(b) Each cross is the location
of one of the 37 anchor nodes
deployed.

Figure 3: The Owheo building anchor node and sample
point layouts, orientated so north is at the top of the images.

current minimum, then we update the estimated location to
the point we have been evaluating. Algorithm 1 shows this
process in detail. Our fingerprint database is indexed first
by position, then node ID, then power levels.

4 Results
The data set for our experiments comes from the first floor
of the Owheo Building, on the corner of Union and Forth
streets in Dunedin, New Zealand. The building covers an
area of 2842.71m2 (51.9m by 48.1m). We divide the build-
ing into six non-overlapping regions to make the data collec-
tion more manageable. In Figure 3a each colour represents
a different region, with the grey areas indicating private of-
fices (giving us a sample area of 339m2. We collected data
from a grid with a distance between each point of 1m. This
produces the grid points for sampling RSSI fingerprints as
shown in Figure 3a. Once we have recorded the relative po-
sition of the mobile node we broadcast 50 requests from the
mobile node at the maximum transmission power. When
this message is received by an anchor node, it measures the
signal strength and sends it back the 29 available power lev-
els. The query tuple is derived from a Gaussian distribution
based on the parameters in the fingerprint database (each



Figure 4: The comparison of the methods across the dif-
ferent regions.

anchor node has multiple transmission power levels, each of
these has a µ and σ). This is repeated 100 times for each of
the sample points.

We include four localisation algorithms for evaluation which
perform in a similar manner to Algorithm 1 except the selec-
tion of RSSI values of different power levels in the calculation
of distance. The first algorithm, Radar, uses only a single
maximum transmission power. MinRadar is where we use
only the minimum transmission power. AllRadar is where
we use all the transmission powers that we observe. Finally,
SIB is our algorithm where we exclude anchor nodes when
we cannot observe their minimum transmission power.

The left hand panel of Figure 4 shows the mean errors of
the four localisation algorithms from a database of points
across the entire floor. From the figure we can see that SIB
has the lowest mean error at 1.15m. We can see that there
is a lower error when we increase the number of transmis-
sion power levels available. Comparing Radar (7.6m) with
AllRadar (5.13m), or SIB (1.15m) with MinRadar (3.42m).
SIB performs 66% better than MinRadar, 78% better than
AllRadar, and 85% better than pure Radar, and is 12% bet-
ter in comparison with previous work.

The right hand panel of Figure 4 shows the performance
in the different regions of the building. In the figure, we can
see that in all areas SIB has the smallest error of all the al-
gorithms. We attribute the performance difference between
le/sr and ce/cw is due to the shape of the areas. The ce
and cw areas are long (21m) narrow (approx 2m) corridors,
compared with the almost square rooms (roughly 10m by
11m), thus the potential for large errors is also reduced.

5 Conclusions
We have proposed a novel approach SIB that uses RSSI val-
ues from low-power transmissions to exclude the noisy mea-
surements from usual high-power RSSI measurements. We
believe that this is the first time that this novel technique
has been used in RSSI-based fingerprinting systems.

We conducted comprehensive experiments in a real-world
situation. Experimental results have shown SIB can reduce
the geometric error by 85% and achieves an accuracy of
1.15m. This improvement is across all the sampled areas,
and is better than most other RSSI-based fingerprint sys-
tems. We have also shown that making use of all the trans-
mission powers received decreases the error significantly. To
the best of our knowledge, we are the first to use this idea
to increase the accuracy of RSSI fingerprinting systems.
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